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1. Supplementary Methods 

Cell culture, sample preparation and labeling with TMT 

Lymphoblastoid cell lines (LCLs) from 95 HapMap individuals were obtained from the 

Coriell Institute for Medical Research. The samples include 53 Caucasians of northern and 

western European ancestry (CEU), consisting of 10 trios, one duo, and 21 unrelated individuals; 

33 Yorubans from Ibadan, Nigerian (YRI), consisting of 9 trios, one duo, and four unrelated 

individuals; 9 eastern Asians (ASN), consisting of eight unrelated Han Chinese from Beijing 

(CHB) and one Japanese from Tokyo (JPT). Anti-IMPA1 antibody was from Sigma-Aldrich 

(Product No: SAB2103588). The LCLs were grown to a density of 0.6-1.4 x 10
6
/mL in RPMI 

medium supplemented with 15% fetal bovine serum, L-glutamine and 1 x antibiotic-antimycotic 

solution at 37°C, 5% CO2. Biological replicates were grown separately. Cell pellets were lysed in 

10x volume of lysis buffer containing 4% SDS and 100 mM dithiotreitol (DTT) in 100 mM Tris-

HCl pH 8.0. Lysates were incubated at 95°C for 5 min. Insoluble remains were removed by 

centrifugation at 16,000xg for 15 min at room temperature.   

Protein lysates were subjected to detergent cleanup, cysteine alkylation, trypsin digestion 

and TMT labeling as described previously with modifications
19

. In brief, 30 μl protein lysates 

were mixed with 200 μl urea buffer (8M Urea, 0.1 M Tris-HCl pH 8.0) in YM-30 microcon filter 

unit (Millipore), and then concentrated at 12,000xg for 15 min. This step was repeated twice to 

remove SDS. The protein lysates were incubated in 100 μl urea buffer supplied with 0.05 M 

iodoacetamide in darkness for 1 hour. Protein concentration was measured using a bicinchoninic 

acid (BCA) assay (Thermo Scientific). Then protein lysates were cleaned up by urea buffer twice 

followed by 20 mM triethylammonium bicarbonate buffer (TEAB) at least three times to get rid 



 

of all the remaining urea and Tris-HCl. The protein lysates were mixed in 20 mM TEAB with 

trypsin at an enzyme:protein ratio 1:50, and incubated at 37°C overnight. The filter was 

transferred to a new tube and spun at 14,000xg for 10 min. Digested peptides were labeled with 

sixplex TMT reagents (Thermo Scientific) as recommended by the manufacturer. Finally, six 

TMT-labeled samples (TMT126-TMT131) were equally mixed to generate the final digest 

mixture. TMT126 was used in each experiment to label the peptides from the reference cell line 

GM12878. 

Two dimensional liquid chromatography tandem mass spectrometry 

All digest mixtures were analyzed on an LTQ Orbitrap Velos (Thermo Scientific) 

equipped with an online 2D nanoACQUITY UPLC System (Waters) as previously described 

with the following modifications
19

. Peptides were separated by using a dual reversed-phase (RP) 

approach. In the first dimension, peptides were separated on an Xbridge 300 μm x 5 cm C18 

5.0 μm column (Waters) using 11 discontinuous step gradient at 2 μl/min. Acetonitrile 

concentration for each step was adjusted to ensure nearly equivalent peptide load and MS 

intensity for each second-dimension run. In the second dimension, peptides were separated on an 

in-house packed 75 μm ID/15 μm tip ID x 20cm C18-AQ 3.0 μm resin column by applying a 8-

30% acetonitrile gradient in 0.1% formic acid over 120 min at 300 nl/min. A total of 51 digest 

mixtures were analyzed in this study. 

During data acquisition by LTQ Orbitrap, the full MS scan was performed in the orbitrap 

in the range of 400-1800 m/z at a resolution of 60000, followed by the selection of the 10 most 

intense ions for HCD-MS2 fragmentation using a precursor isolation width window of 1.5 m/z. 

The normalized collision energy for HCD was set to 38% at 0.1 ms activation time. The signal 



 

for MS2 requires a minimum of 5000 counts. Ions with singly charged state or unassigned charge 

states were rejected for MS2. Ions within 10 ppm m/z window around ions selected for MS2 

were excluded from further selection for fragmentation for 60 s. 

Mass Spectrometry data processing and filtering 

The acquired raw data from each digest mixture were searched against a human 

International Protein Index (IPI) database, version 3.75
20

, concatenated with a decoy database 

with all the protein sequences in reverse order, using the SEQUEST algorithm
21

 (Proteome 

Discoverer software, version 1.2, Thermo Scientific). Searches were performed using a 10 ppm 

mass tolerance for precursor ions and 0.02 Da for fragment ions, allowing up to two trypsin 

missed cleavages. Sixplex TMT tags on lysine residues and peptide N termini (+ 229.163 Da) 

and oxidation of methionine residues (+ 15.995 Da) were set as a variable modification; 

carbamidomethylation of cysteine residues (+57.021 Da) were set as static modifications. 

Peptides with minimum seven amino acid lengths and rank 1
st
 were considered for protein 

identification. We first grouped the redundant proteins and filtered low confidence identifications 

based on the IPI database: proteins identified with the same sequence were grouped together to 

eliminate redundancy in the protein list. Proteins matched to decoy sequences were considered as 

false discovery. Peptides were further filtered based on SEQUEST parameter XCorr vs. charge 

state to achieve final protein identification FDR less than 1% for each mixed sample. For 

quantification, peptides with all the quantification channels present were used. Intensity of 

reporter ions in each channel was integrated by most confident centroid method with 10 ppm 

window tolerance. Peptide ratios (based on reporter ion intensity/ reference cell line reporter ion 

intensity) were median normalized across all the quantified proteins in each sample to eliminate 



 

sample mixing bias. Outlier peptides which were above 100 fold change were removed. The 

filtered high confidence peptides in each mixed sample were then exported from the Proteome 

Discoverer software for the next step analysis. Combining all the 51 2D LC-MS/MS 

experiments, 2,726,242 high confidence peptide spectra were analyzed, corresponding to 71,800 

unique peptide sequences.  

Calculation of the protein levels 

The correspondence between peptide sequences, proteins, genes (Ensembl gene IDs) and 

genomic coordinates was established based on the protein and gene cross-reference tables of IPI 

database version 3.87 and the transcript sequences of Ensembl database release 62. Among the 

71,800 unique peptide sequences, 67,075 were mapped to unique Ensembl gene ID and selected 

for further analyses.  

We next sought to identify the peptide sequences overlapping with known protein coding 

variants predicted to alter the protein sequence and polymorphic in our samples. Such peptides 

may lead to false positive pQTL discoveries by our method (in a matter analogous in RNA 

expression studies to the issue of SNPs overlapping with microarray gene expression probes). 

The genotypes of 94 out of 95 of our cell lines were obtained from HapMap release 

28
9,22

(combining phase I II and III, there are up to ~4 million SNPs genotyped). Furthermore, 62 

of our 95 cell lines had whole genome resequencing information available from the 1000 

Genomes Project phase 1v3 (56 cell lines) and pilot 2 trios (6 cell lines)
23

. Variant consequence 

annotations were obtained from the Ensembl database release 62 and the 1000 Genomes Project. 

Peptides overlapping with a nonsynonymous SNP or mapping 3’ of exon-coding-change SNPs 

(e.g. a stop codon gained or lost, or an essential splice site mutation in the first two or last two 



 

base pairs of an intron) which were polymorphic in our samples were removed from the 

quantification, leaving 60740 unique peptide sequences, mapping to 5953 genes, and quantified 

in 2,159,989 MS2 spectra. Based on this final peptide list, for each sample and each gene, we re-

quantified proteins based on the median ratio of all peptides mapping to the same gene. The 

log2-transformed protein ratio was considered as the relative protein level. Note that by this 

approach, we obtained a single protein level quantification per gene and excluded many of the 

HLA proteins. 

Our study included 2 to 5 biological replicates for each cell line (biological replicates 

mean the cell line was independently cultured, prepared and analysed in different LC-MS/MS 

runs). The measure of protein level for each individual used throughout the manuscript was the 

average log2 protein ratio of biological replicates.  

Protein variation 

For most of the analyses below, we focused on the 4053 proteins measured in at least half 

of the unrelated individuals. We have a total of 74 unrelated individuals in our study: 42 CEU 

(20 parents of trios, 1 parent of a duo, and 21 other unrelated), 23 YRI (18 parents of trios, 1 

parent of a duo, and 4 other unrelated), and 9 ASN. Protein level data from the 19 children in 

trios were used only for heritability estimations. We noted that these 4053 proteins, consistently 

detected by mass spectrometry, are likely the more abundant proteins in the LCLs.  

Protein variation was quantified by calculating for each protein the coefficient of 

variation (CV) of the protein levels on the ratio scale within each population and in all 

populations combined after adjusting the protein levels for population averages. GO ontology 



 

categories enrichment analyses were performed in PANTHER
25 

using the Bonferroni correction 

for multiple testing and the list of 4053 proteins as the background set. 

Since differential posttranslational modifications could affect protein expression 

measured by our method, we examined the potential contribution of posttranslational 

modifications to protein variation in our dataset. We focused on peptide phosphorylation and 

used two different approaches to estimate the potential phosphorylation level of each protein. In 

the first approach, we calculated the STY amino acid (serine, threonine, and tyrosine) percentage 

among the sum of all used peptide sequences for each protein. In the second approach, we 

computed the fraction of potential phosphopeptides used for quantifying each protein, treating all 

peptides containing a phosphorylable site in the Phospho.EML database as a potential 

phosphopeptide. We observed that neither the STY percentage nor the phosphopeptide 

percentage shows enrichment in the sets of highly variable proteins (Supplementary Fig. 2). 

Although indirect, this observation indicates that the contribution of phosphorylation to our 

measurements of protein expression variation is likely to be small. 

Differences between sexes and populations 

To identify proteins differentially expressed between males and females, we used a linear 

model and regressed protein levels on sex, adjusting for population differences by using the 

population label as a covariate. To identify proteins differentially expressed between CEU and 

YRI LCLs, we regressed protein levels on population label. The FDR for both analyses was 

calculated using the QVALUE Bioconductor package
24

.  

Protein covariation 



 

For the protein covariation network analysis, we selected the 2279 proteins which were 

quantified in all 74 unrelated individuals. To adjust for population stratification, a linear 

regression of protein level on population label was performed and the residuals were normalized 

by transforming the quantiles of the residual values to their respective quantiles of a N(0,1) 

distribution. We constructed the protein coexpression networks based on the Gaussian graphical 

model and the statistical approaches implemented in the R package sparse partial correlation 

estimation (SPACE)
13

; we also analyzed the data using the method of Meinshausen and 

Bühlmann
26

. Since both methods gave similar results, we present the results from SPACE only. 

Both algorithms required choosing a tuning parameter, which controls the stringency with which 

two proteins are considered as co-varying. To approximate the FDR of the network analysis, we 

augmented the protein data with permutations of 944 protein expressions. We treated an edge 

connecting two permuted proteins or an edge connecting a permuted and an observed protein as 

known false edge; thus the network analysis included 2,591,752 a priori known false edges. In 

applying SPACE, no known false edges were detected until ~ 1,000 edges were in the inferred, 

thus we used this criterion to construct the dense network (Supplementary Table 6). We further 

assessed the stability of both sparse and dense network using a stability concept similar to the 

method of Meinshausen and Bühlmann
27

. Specifically, we repeatedly sampled half of the 

individuals (n=37), applied SPACE to these smaller datasets, and compared the edges detected in 

the full datasets with those detected in sub-samples. The idea of stability is that high-confident 

edges are likely to be stably detected using a subset of the sample. Because the size of the sub-

samples was small, the statistical power to detect a true edge was substantially reduced. To 

alleviate the problem, we chose the tuning parameters to obtain smaller networks with an 

average of 520 edges to be compared with the full-data sparse network (Figure 2, Supplementary 



 

Table 5), and bigger networks with an average of 2105 edges to be compared with the full-data 

dense network. Over 100 sub-samples, we found that an average of 134 of the 223 edges (60%) 

detected in the sparse network were selected in each sub-sample network. As a negative control, 

we considered the 448 edges that were selected in a sub-sample but not in the full dataset as low-

confident edges; over the 100 sub-samples, an average of 44 edges (~10%) re-occurred in the 

sub-sample networks. Similarly, we found an average of 482 of the 1012 edges (48%) in the full-

data dense network to be represented in each sub-sample network, compared to an average of 

143 of the 1813 low-confident edges (8%) that were selected in a sub-sample network. For the 

comparison with RNA expression, we used data generated in the two RNA-Seq experiments: the 

CEU gene-level expression
2 
and the YRI normalized gene-level expression

3
, quantile-normalized 

to fit a N(0,1) distribution. These included expression of 2147 genes in CEU and 2156 genes in 

YRI in common with the protein dataset. 

For known protein interaction dataset in the literature, we considered protein-protein 

interactions from three public databases, i.e. BioGRID, HPRD and IntAct
28-30

. To estimate the 

degree of known protein interaction enrichment in the sparse protein covariation network, we 

selected 278 proteins randomly from 2279 proteins and then selected 223 edges randomly from 

the possible 38,503 edges (278 x 277/2 =38,503). In this way, the generated random network was 

matched with the inferred sparse network. Then we counted the number of known protein 

interactions in the simulated network, and replicated 20,000 times. The true sparse protein 

covariation network had 29 known protein-protein interactions, while the maximum number of 

interacting pairs found in a simulated network was 10. Therefore the protein covariation network 

is highly enriched for known interacting protein pairs (P < 5 x 10
-6

). 



 

Heritability estimations 

The heritability of protein levels was calculated as the slope of the regression line of the 

children protein level on the mid-parent protein level (log2 ratios) based on the 10 CEU trios and 

9 YRI trios. We focused on the proteins that are detected in all the trios, 2395 and 2534 proteins 

in CEU and YRI, respectively, with an overlap of 2292 proteins. The slope of the regression line 

is an estimate of the narrow sense heritability, the proportion of total phenotypic variation due to 

the additive effects of genes. The heritability estimates are a statistical estimation, and are subject 

to sampling errors. However, aggregated across all proteins, the "average" protein level 

heritability is significantly greater than 0 in both CEU (P = 2 x 10
-9

) and YRI (P = 3 x 10
-62

), 

two-tailed t-test. In CEU, the average heritability is 0.06 (95% CI = 0.04-0.09). In YRI, the 

average heritability is 0.17 (95% CI = 0.15-0.19).  

Cis-pQTL mapping 

We initially searched for cis-pQTLs +/- 200 kb of the gene region and found that the 

majority of cis-pQTLs lie within 20 kb of the gene region, similarly to what has been found for 

cis-eQTLs. Therefore, for the analysis presented in the main text, we tested genetic variants 

within 20 kb of the gene region for cis-pQTL effect, thereby limiting the multiple testing burdens 

and increasing our power to detect pQTLs. 

For each of the 4053 proteins with at least 50% data, we tested the association between 

protein levels and the genotypes of SNPs located in the corresponding gene region +/- 20 kb and 

with MAF > 10%. SNPs genotypes were obtained from HapMap III release 3
9
, and were 

available for 72 out of the 74 unrelated individuals. Throughout the manuscript, we report 



 

genomic coordinates relative to the NCBI36 human genome assembly. Where needed, genomic 

coordinates were converted between the NCBI36 (or hg18) and the GRCh37 (or hg19) human 

genome assemblies using the UCSC browser liftOver utility
31

. 

The tests for genetic association were performed in R (http://www.r-project.org/) or 

PLINK
32

, using a linear model where protein level (log2 ratio) was regressed on SNP genotype 

assuming an additive genetic model. In Supplementary Tables S8, we report the regression 

coefficient beta for the genetic effect, interpretable as the mean increase in protein level (log2 

protein ratio) per copy of the SNP minor allele. In the analysis of the three populations 

combined, population structure was adjusted for by introducing two covariates in the linear 

model, coding for the CEU and YRI population label. For association testing with X 

chromosome SNPs, sex was used as an additional covariate in the model and the SNP genotype 

was coded as 0, 1, or 2 minor alleles in females and 0 or 1 minor allele in males. In total 116556, 

121405, and 130505 tests were performed in CEU, YRI, and three populations combined 

analyses, respectively. At the protein level, we corrected the nominal P values of each SNP for 

multiple testing using a permutation procedure that accounts for the number of SNPs tested for 

that protein and local linkage disequilibrium. The corrected P values for multiple testing at the 

protein level were calculated using the max(T) permutation procedure. Briefly, for each protein, 

protein levels were permuted between cell lines, and for each permutation the minimum P value 

over all SNPs was recorded. A corrected P value was calculated for each SNP as the count of P 

values identified in the permutations that were smaller than the original P value for that SNP 

divided by the number of permutations. In the CEU and YRI analyses, corrected P values were 

obtained using the PLINK software implementation of the max(T) procedure and 10,000 

permutations of the phenotype. For all three populations combined, we implemented the 



 

permutation procedure in R, permuting phenotypes within each population adaptively up to 

10,000 times. The pQTL FDR was calculated based on the distribution of the minimum max(T) 

corrected P values (one per protein) using the QVALUE Bioconductor package
24

.  

For the 77 proteins with detected cis-pQTLs in the combined population at FDR 10%, the 

median heritability was 0.12 in the CEU trios, 0.34 in the YRI trios, and 0.31 for a combined 

analysis of the 19 CEU and YRI trios correcting for population averages. Therefore as expected 

proteins with detected cis-pQTLs tend to have greater heritability than on average. 

Alternative cis-pQTL analyses subsetting on the proteins with high signal to noise ratios 

We reasoned that our power to detect pQTLs might be greater for proteins with higher 

variation among individuals and high reproducibility among replicates. To explore this 

possibility, for each of the 4053 proteins, we calculated a signal to noise ratio (SNR) by 

comparing the variation among individuals (the signal) to the variation among replicate 

measurements (the noise). Specifically, the signal was calculated as the coefficient of variation 

of protein levels on the ratio scale among the 74 unrelated individuals after correcting for 

population differences and the noise was calculated as the median coefficient of variation of the 

protein level on the ratio scale over all biological replicate measurements. The SNR ranges from 

0.66 to 8.97, with a median of 1.79. We found that the cis-pQTLs we identified are enriched for 

proteins that have higher SNR, with 79%, 69%, and 68% of the proteins with cis-pQTLs in the 

CEU, YRI, and combined population (FDR10%) having an SNR greater than the median of 1.79, 

respectively. This indicates that the cis-pQTLs we identified tend to be associated with proteins 

more reproducibly measured and/or more variable among individuals. To assess whether only 

considering proteins with high SNR would improve our power to detect pQTLs, we performed 



 

the cis-pQTL analysis subsetting on the 2027 proteins with SNR greater than the median of 1.79. 

At FDR 10%, the counts of cis-pQTLs identified are almost identical to that of the analysis based 

on all 4053 proteins (35, 13, and 73 pQTLs found in CEU, YRI, and three populations combined 

respectively). Therefore we presented the analysis based on all 4053 proteins in the main text.  

Comparison of pQTLs and eQTLs 

We evaluated whether the same genetic variants may be associated with both protein and 

RNA levels by comparing our proteomics results to that of two RNA-Seq studies of CEU and 

YRI LCLs
2,3

. First, starting with the pQTLs we identified, we obtained the P value for the 

association of the same SNPs with RNA levels. In CEU, we used the P values found in published 

result tables for the matched SNP and gene. In YRI, we recalculated the P value for the SNP/ 

RNA association using a linear model and gene-level normalized RNA-Seq data. In cases where 

the SNP was tested for association with multiple transcripts (in CEU) or in cases where multiple 

SNPs had equally most significant P values as pQTLs, we selected the minimum P value of all 

possible associations with RNA levels. Results from this analysis are presented in 

Supplementary Fig. 8. 

Reciprocally, to determine the P values as pQTLs of SNPs identified as eQTLs, we used 

the CEU and YRI RNA-seq result files of significant eQTLs (FDR 10% in YRI and permutation 

corrected P ≤0.05 in CEU), matching with our protein data on both SNP and corresponding gene. 

To make the YRI and CEU RNA studies more comparable, we only considered the most 

significant SNP within 200kb of the gene region in both RNA studies. We observed that eQTLs 

are enriched for significant associations with protein levels (not shown).  



 

Finally, the IMPA1 RNA levels were obtained from the same RNA-Seq studies that 

included 37 CEU LCLs and 22 YRI LCLs in common with our proteomics study
2,3

. The 

correlation between RNA and protein levels was plotted for the combined CEU and YRI LCLs 

by standardizing RNA and protein levels to have a mean of 0 and standard deviation of 1 within 

each population. 
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2. Supplementary Figures 

 

 

 

 

 

 

 

Supplementary Fig. 1 | Protein variation between individuals and populations. 

a) Comparison of Spearman’s rank correlation coefficient distributions between pairs of 

biological replicates and non-replicates. The dashed lines are at median values. Biological 

replicates (in orange) have higher correlation than non-replicates (in grey). b) Percentage of 

proteins that change between pairs of individuals. The percent of proteins that change more than 

1.5 folds between pairs of individuals was calculated based on 4053 proteins in 74 unrelated 

individuals. A median of 5.7% of the proteome changed more than 1.5 folds between a pair of 

individuals. c) Proteome variation among populations. The coefficient of variation (CV) of each 

protein ratio was calculated in each population (CEU, YRI, and ASN). Variable proteins in one 

population tend to also be variable in the other two populations. 
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Supplementary Fig. 2 | Protein phosphorylation level in different protein variation 

quantiles. 

a) Percent of STY amino acids per variation quantile. b) Percent of phosphopeptide per variation 

quantile. X axes, protein variation levels increase from left quantile to right quantile.  
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Supplementary Fig. 3 | Go ontology enrichment analysis of protein groups with different 

variation levels. 

Proteins varying the most and the least (top 20%) based on the 4053 proteins in 74 unrelated 

individuals were subjected to GO enrichment analysis on biological processes. Plotted are the 

functional categories with enrichment P value < 0.01. Bonferroni correction was used for 

multiple testing. These two groups of proteins show very different GO enrichment patterns. 

Proteins that vary the most are enriched in immune response processes; proteins that vary the 

least are enriched in metabolic processes. 

  



 

 

 

 

 

 

 

Supplementary Fig. 4 | Protein level differences between sexes. 

a) The P value distribution for the test of the difference in protein levels between males and 

females shows modest enrichment at small P values.  

b) P values for the test of protein level differences between males and females plotted as a 

function of the genomic coordinate for each protein. The dashed line is at significance threshold 

Bonferroni P = 0.05. All the proteins that passed the threshold are highlighted with larger dots 

and labelled with gene names. All of the seven proteins that significantly differed between males 

and females mapped to either the X or Y chromosome. 
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Supplementary Fig. 5 | Correspondence between protein-protein covariation and RNA-

RNA covariation. 

a) The correlations of all RNA pairs using RNA-Seq data in CEU and YRI is symmetrically 

distributed around zero. b) The distribution of the correlations of RNA pairs corresponding to the 

pairs in the protein covariation network is skewed toward larger positive values (with median 

Spearman’s rank correlation coefficient 0.42 for CEU and 0.21 for YRI). Therefore, covarying 

proteins tend to have covarying RNAs on average. 
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Supplementary Fig. 6 | Distribution of protein heritability in CEU and YRI. 

Distributions of the heritability of the levels of 2395 proteins in CEU (a) and 2534 proteins in 

YRI (b). Estimates of the narrow-sense heritability were calculated as the slope of the regression 

line of the child log2 protein ratio plotted as a function of the parents average log2 protein ratio, 

based on data with no missing measurements from 10 trios in CEU and 9 trios in YRI. 

Heritability estimates were centered at a median of 0.06 in CEU and 0.17 in YRI respectively. 

The mean heritability was 0.07 with a 95% confidence interval of [0.04, 0.09] in CEU, and 0.17 

with a 95% confidence interval of [0.15, 0.19] in YRI. The mean protein level heritability was 

significantly different from 0 in both CEU and YRI (P = 2 x 10
-09

 and P = 3 x 10
-62

, in CEU and 

YRI respectively). 

 

  

a b 



 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 7 | Loci associated with protein expression levels in CEU and YRI. 

a) Identification of cis-pQTLs in CEU (n=41) and YRI (n=22). The P value and genomic 

coordinate for each protein/cis-SNP association test were plotted in Manhattan plots. pQTLs 

with max(T) corrected P value < 0.001 were highlighted with a bigger dot size and a black 

outline. Multiple loci throughout the genome displayed an excess of small P values.  

b) Estimation of the reproducibility of CEU pQTLs in YRI. The P value distribution for tests in 

YRI of CEU pQTLs identified at FDR 30% shows that the significant tail is highly enriched.  

c) The regression coefficients or effect sizes of CEU pQTLs (FDR 30%) in the CEU and YRI 

populations are mostly consistent. These results indicate that the genetic loci that affect protein 

expression are often shared across populations. 
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Supplementary Fig. 8 | Comparison of pQTLs and eQTLs. 

a,b) Histogram of P values for the association of CEU RNA expression (a) or YRI RNA 

expression (b) with the SNPs identified as pQTLs in the combined populations (FDR 10%). 

Enrichment of small P values for association of RNA expression with the pQTL SNPs was 

observed by using either CEU or YRI RNA expression, but not all of the pQTLs correspond to 

an eQTL. c,d) Histogram of P values for the association of CEU RNA expression (c) or YRI 

RNA expression (d) with the SNPs identified as pQTLs in CEU. e,f) Histogram of P values for 

the association of CEU RNA expression (e) or YRI RNA expression (f) with the SNPs identified 

as pQTLs in YRI. Due to the limitation of sample size, fewer pQTLs were observed in YRI 

compared to CEU and the combined population analysis.   
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Supplementary Fig. 9 | OAS1 peptide expression levels against rs10774671 genotypes. 

Expression levels of 15 unique peptides mapping to the OAS1 gene in 95 LCLs were plotted 

against rs10774671 genotypes. Of them, peptides 1 to 14 are not allele-specific in the 95 LCLs, 

which were used to quantify OAS1 protein levels. Peptides 1 to 9 are located in exon 1 and 2, 

and are shared by all known OAS1 isoforms in the literature. Peptide 15 is located at the junction 

between exon 5 and 6. SNP rs10774671 is located right before exon 6 and causes alternative 

splicing of OAS1. At peptide level, almost all peptides show a consistent association of the G 

allele with increased protein levels. 

  



 

 

 

Supplementary Fig. 10 | Validation of IMPA1 protein level in the YRI population. 

IMPA1 protein expression level was validated by immunoblotting in 11 YRI individuals, with 

their genotype at rs1058401 (the most significant pQTL) labeled at the bottom. The bar plots 

show the mean of IMPA1 protein level of these 11 individuals in each rs1058401 genotype 

category, based on data measured by quantitative mass spectrometry (left plot) and by 

densitometry of immunoblotting figures (right plot). Error bar, standard error of the mean. M.S., 

mass spectrometry. Im., immunoblotting.  

  



 

 

 

Supplementary Fig. 11 | Correlation between protein and RNA for IMPA1. 

Plotted is the correlation between IMPA1 RNA and protein standardized expression levels, 

combining results from CEU (n=37) and YRI (n=22). There is no significant correlation between 

protein and RNA levels (Pearson correlation coefficient r = 0.04, P  = 0.76). 

 


